Violympic toán 9

Nguyễn Thu Trà

Cho x, y, z là 3 số thực dương và thoả mãn: \(4x^2+9y^2+16z^2=1\). Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{2x}{9y^2+16z^2}+\dfrac{3y}{4x^2+16z^2}+\dfrac{4z}{4x^2+9y^2}\)

Nguyen
1 tháng 1 2019 lúc 12:32

Áp dụng bđt Svác xơ, ta có:

\(A\ge\dfrac{\left(\sqrt{2x}+\sqrt{3y}+\sqrt{4z}\right)^2}{2\left(4x^2+9y^2+16z^2\right)}\)\(=\dfrac{2x+3y+4z+2\left(\sqrt{6xy}+\sqrt{12yz}+\sqrt{8xz}\right)}{2}\)\(\ge\dfrac{1+2\left(3\sqrt[3]{\sqrt{576x^2y^2z^2}}\right)}{2}\)(BĐT Cô-si)\(\ge\dfrac{1+6}{2}=\dfrac{7}{2}\)

Vậy Amin=\(\dfrac{7}{2}\Leftrightarrow\)\(\left\{{}\begin{matrix}\dfrac{2x}{9y^2+16z^2}=\dfrac{3y}{4x^2+16z^2}=\dfrac{4z}{4x^2+9y^2}\\\sqrt{6xy}=\sqrt{12yz}=\sqrt{8xz}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}y=2z\)

Neet
1 tháng 1 2019 lúc 17:38

Viết lại bài toán: Cho \(a^2+b^2+c^2=1\). Tìm max \(\sum\dfrac{a}{b^2+c^2}\)

với a=2x, b=3y, c=4z.

Áp dụng BĐT AM-GM:

\(a\left(b^2+c^2\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a^2\left(1-a^2\right)\left(1-a^2\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\dfrac{8}{27}}=\dfrac{2}{3\sqrt{3}}\)

Do đó \(VT\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Vậy \(A_{Min}=\dfrac{3\sqrt{3}}{2}\)


Các câu hỏi tương tự
Rosie
Xem chi tiết
Big City Boy
Xem chi tiết
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Cố Gắng Hơn Nữa
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Nishimiya shouko
Xem chi tiết
Cố Gắng Hơn Nữa
Xem chi tiết