Cho ba số x, y, z thỏa mãn điều kiện
4x^2+2y^2+2z^2-4xy+2yz-6y-10z=-34
Tính giá trị biểu thức Q=(x-4)^2014+(y-4)^2014+(z-4)^2014
Cho x,y thỏa mãn : x^2+2xy+6x+6y+2y^2+8=0. Tìm GTLN, GTNN của biểu thức : M=2019(x+y)+2020
Cho x và y thỏa mãn \(x^2+2xy+6x+6y+2y^2+8=0\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức \(B=x+y+2016\)
Tìm GTNN của biểu thức:
A=x2 + y2 -2x +6y +20
B=x2 +2y2 +2xy -4x -8y +2014
bt x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0
tìm max và min của B=x+y+2020
Câu 1:
Tìm x và n biết : x2 + 2x +4n - 2n-1 + 2 = 0
Câu 2:
Cho hai số thực x , y thỏa mãn 5x2 + 5y2 + 8xy - 2x + 2y +2 = 0
Tính B = ( x + y )2010 + ( x - 2 )2012 + ( y + 1 )2014
Câu 3 :
Cho biểu thức Q = x2 + 6y2 - 2xy - 12x + 2y + 2017
Chứng minh rằng biểu thức Q luôn nhận giá trị dương với mọi số thực x , y
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0
Giá trị của biểu thức P = \(\dfrac{3x^2y-1}{4xy}=?\)
Cho các số dương x;y;z thỏa mãn:\(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức :\(S=\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)