\(\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=2\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{2}\)
\(\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=2\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho x, y là 2 số dương và x+y=1. Tìm GTNN của:
M=\(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\)
Help me!!!
cho 2 số dương x,y sao cho x+y=1. Tìm GTNN của biểu thức:
P=\(\dfrac{1}{xy}+\dfrac{1}{x^{2}+y^{2}}\)
Cho x,y là các số thực dương TM: x+y=1 Tìm GTNN: \(\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}\)
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
cho các số thực dương x,y thỏa mãn \(x+\dfrac{1}{y}\le1\) tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
cho x,y>0 và \(2x^2+2xy+y^2-2x\le8\). tìm GTNN của \(P=\dfrac{2}{x}+\dfrac{4}{y}-2x-3y\)