\(P=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)\)
\(\Rightarrow P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xz}}=\frac{4}{1^2}+4=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)\)
\(\Rightarrow P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xz}}=\frac{4}{1^2}+4=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Cho các số x, y > 0. Tìm GTNN của các biểu thức sau:
C = \(\frac{\left(x-y\right)^2}{xy}+\frac{4xy}{\left(x+y\right)^2}\)Cho các số dương x,y thoả mãn x + y = 1.Tìm giá trị nhỏ nhất của P = \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
rút gọn biểu thức
A= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1. Cho A = \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)
Tính giá trị M biết: x2 + 9y2 - 4xy = 2xy - \(\left|x-3\right|\)
Câu 1: Cho biểu thức
A =\(\frac{4xy}{y^2-x^2}\): (\(\frac{1}{y^2-x^2}\)+\(\frac{1}{y^2+2xy+x^2}\))
a) Tìm điều kiện của x, y để giá trị A được xác định
b) Rút gọn A
B = (\(\frac{1-x^3}{1-x}\)- x) : \(\frac{1-x^2}{1-x-x^2+x^3}\)với x khác -1 và 1
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A tại x = \(-1\frac{2}{3}\)
c) Tìm giá trị cảu x để A = 0
Cho x,y,z>0 và x+y+z=1.Tìm GTNN của biểu thức:P=\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\)
CHo x,y > 0, x + y = 1. Tìm GTNN của \(S=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Rút gọn các biểu thức rồi tính giá trị:
a) \(\frac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-2x^2}\), với x = -3; y = \(\frac{1}{2}\)
b) \(\frac{\left(8x^3-y^3\right)\left(4x^2-y^2\right)}{\left(2x+y\right)\left(4x^2-4xy+y^2\right)}\), với x = 2; y = -\(\frac{1}{2}\)