Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)
Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:
\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)
Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:
\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$