BĐT sai:
Phản ví dụ với \(x=y=1\Rightarrow1+1>3\left(1+1\right)\Leftrightarrow2>6\) (sai)
BĐT sai:
Phản ví dụ với \(x=y=1\Rightarrow1+1>3\left(1+1\right)\Leftrightarrow2>6\) (sai)
Cho 2 số thực x ; y thỏa mãn 0 < x ≤ 1 , 0 < y ≤ 1 và x + y = 3xy . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 + y2 - 4xy
cho x,y thuoc R.thoa man 0<x≤1,0<y≤1 va x+y=3xy
tim GTLN va GTNN cua P=x2+y2-4xy.
Giải hệ pt:
\(\left\{{}\begin{matrix}x^2+2y^2+3xy+3=0\\\dfrac{x-y+18}{\left(x+y\right)^2}=9\sqrt{x-y}\end{matrix}\right.\)
Cho x,y thõa mãn: x3+y3+1=3xy (x,y ≠ 0).
Tính: A=(1+x)(1+\(\dfrac{1}{y}\))(1+\(\dfrac{y}{2}\))
Cho x, y, z > 0 . CMR \(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{x+z}}+\sqrt{\dfrac{z}{y+x}}>2\)
Cho x>0,y>0 và \(x^3+y^3=x-y\). CMR : \(x^2+y^2< 1\)
\(\left\{{}\begin{matrix}x^2+y^2-3xy+x-y=-6\\2\left(x^2+y^2\right)-5xy=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+3xy-3\left(x-y\right)=0\\x^4+9y\left(x^2+y\right)-5x^2=0\end{matrix}\right.\)