cho tứ giác ABCD và điểm M thuộc đường trong của tứ giác
Chứng minh : a) MA+MB+MC+MD > AB+CD
b) MA+MB+MC+MD \(\ge\dfrac{AB+BC+CD+DA}{2}\)
Cho tứ giác ABCD có hai đường chéo bằng nhau và cắt nhau tại O. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ có các cạnh bằng nhau.
b) MP cắt AC và BD tại E và F. Chứng minh rằng tam giác OEF cân
Cho tứ giác ABCD và một điểm M nằm trong tứ giác đó. Tìm vị trí của điểm M sao cho: MA + MB + MC + MD đạt giá trị nhỏ nhất.
giúp mình bài này với!
Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o
a, Chứng minh AC là đường trung trực của BD.
b, Tính góc B và góc D.
Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2
Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:
a, △ABC và △EDC bằng nhau
b, AC là phân giác của góc A
Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.
a, Tính số đo các góc của tứ giác ABCD.
b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.
giúp mình bài này với!
Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o
a, Chứng minh AC là đường trung trực của BD.
b, Tính góc B và góc D.
Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2
Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:
a, △ABC và △EDC bằng nhau
b, AC là phân giác của góc A
Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.
a, Tính số đo các góc của tứ giác ABCD.
b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.
chứng minh rằng M là giao điểm của các đường chéo của tứ giác ABCD thì MA+MB+MC+MD nhỏ hơn chu vi nhưng lớn hơn nửa chu vi tứ giác
Cho tứ giác ABCD tìm vị trí của M trong tứ giác để MA+MB+MC+MD bé nhất
1) Cho tứ giác ABCD có M là 1 điểm nằm trong tứ giác . Xác định vị trí của M để tổng MA+MB+ MC+ MD nhỏ nhất.
2)Tứ giác ABCD có đường chéo AC và cạnh AD có độ dài bằng nhau.Chứng minh : BC < BD
Cho tứ giác ABCD có góc A bằng góc B và BC=AD. Chứng minh ∆DAB=∆CBA, AC=BD, góc ADC bằng góc BCD, AB//CD
Cho tứ giác ABCD có AB = BC; CD = DA.
a) Chứng minh: BD là đường trung trực của AC;
b) Cho B = 100 o , D = 80o . Tính A và C