Bài 7: Hình bình hành

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
jfbdfcjvdshh

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.

Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành

b) Các đường thẳng MP, NQ, IK đồng quy

Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 0:27

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔCDA có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2)suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

dương hoang
24 tháng 8 2022 lúc 6:25

a) QQ là trung điểm của ADAD

MM là trung điểm của ABAB

⇒QM⇒QM là đường trung bình của ΔABDΔABD

⇒PN∥=12BD⇒PN∥=12BD (2)

Từ (1) và (2) suy ra ⇒QJ∥=12CD⇒QJ∥=12CD (1)

Tương tự KNKN là đường trung bình của ΔBCDΔBCD

QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)

⇒⇒ tứ giác JNKQJNKQ là hình bình hành.

 

b) Tứ giác MNPQMNPQ là hình bình hành

⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O

⇒O⇒O là trung điểm của MPMP và QNQN

Tứ giác INKQINKQ là hình bình hành

Có hai đường chéo là QNQN và KJKJ

OO là trung điểm của QNQN

⇒O⇒O là trung điểm của KJKJ

⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.


Các câu hỏi tương tự
Nguyễn Diệu Huyền
Xem chi tiết
Lê thị khánh huyền
Xem chi tiết
Pham tra my
Xem chi tiết
Trang Nguyễn Minh
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
Thanh
Xem chi tiết
ARMY Suga
Xem chi tiết
Ngọc
Xem chi tiết
Phạm Nguyệt Minh
Xem chi tiết