\(\widehat{CMD}+\widehat{MCD}+\widehat{MDC}=180^0\\ \Rightarrow\widehat{MDC}+\widehat{MCD}=180^0-60^0=120^0\\ \left\{{}\begin{matrix}\widehat{MDC}=\dfrac{1}{2}\widehat{ADC}\\\widehat{MCD}=\dfrac{1}{2}\widehat{BCD}\end{matrix}\right.\Rightarrow\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=120^0\\ \Rightarrow\widehat{ADC}+\widehat{BCD}=240^0\\ \widehat{B}+\widehat{BCD}+\widehat{ADC}+\widehat{A}=360^0\\ \Rightarrow\widehat{A}+\widehat{B}=360^0-240^0=60^0\\ 3\widehat{A}=7\widehat{B}\Rightarrow\dfrac{\widehat{A}}{7}=\dfrac{\widehat{B}}{3}\)
Áp dụng t/c dtsbn:
\(\dfrac{\widehat{A}}{7}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{A}+\widehat{B}}{7+3}=\dfrac{60^0}{10}=6^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=42^0\\\widehat{B}=18^0\end{matrix}\right.\)