Cho tứ giác ABCD và 1 đường thẳng d không đi qua miền trong tứ giác. Gọi E và F lần lượt là trung điểm của Ac và BD. Gọi I là trung điểm của EF. Gọi A'; B'; C'; D'; I' lầ lượt là hình chiếu vuông góc của A; B; C; D; I trên đường thẳng d.
CMR: AA' + BB' + CC' + DD' = 4.II'
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Cho tam giác ABC trung tuyến AM gọi G la trong tâm của tam giác qua G ke đường thẳng D cắt 2 cạnh AC=AB,gọi AA',BB',CC',MM' là các đường trong góc ke từ A ,D,C,M đến đường thẳng D .CM:
a)MM'=DD'+CC' chia cho 2
b)AA'=BB'+CC' chia cho 2
Tứ giác ABCD, A';B';C';D' là trọng tâm của các tam giác BCD, tam giác ACD, tam giác ABD, tam giác ABC. Chứng minh 4 đường thẳng AA';BB';CC';DD' đồng quy.
65. Tứ giác ABCD có AB=BC, CD=DA (hình cái diều). Chứng minh rằng điểm A đối xứng điểm C qua đường thẳng BD
66. Tam giác ABC có AB<AC. Gọi d là đường trung trực của BC. Vẽ điểm K đối xứng với điểm A qua đường thẳng d.
a) Tìm các đoạn thẳng đối xứng với đoạn AB qua d, đối xứng với đoạn thẳng AC qua d
b) Tứ giác AKCB là hình gì ? Tại sao ?
Cho tam giác abc có trung tuyến am mờ gọi o là trung điểm của am. qua o vẽ một đường thẳng bất kỳ các hai cạnh ab, ac. gọi a', b', c' là hình chiếu lên đường thẳng qua o của a, b, c. Cm BB'+ CC'= AA'
Bài 1:Cho tứ giác ABCD.Gọi A',B',C',D' theo thứ tự là trọng tâm các tam giác BCD,ACD,ABD,ABC.Chứng minh rằng:4 đường thẳng AA',BB',CC',DD' gặp nhau tại một điểm.
Bài 2:Cho tứ giác ABCD.Hai cạnh AB,CD kéo dài cắt nhau tại E.Hai cạnh BC,AD kéo dài cắt nhau tại F.Tính góc tạo bởi 2 tia phân giác E và F theo các góc trong của tứ giác ABCD.
Cho tam giác vuông ABC vuuong tại A(AB<AC). Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc tại N.
a) C/M tứ giác AMIN là hình chữ nhật
b) Cho biết IN =3 cm;IM= 4 cm.Tính diện tích tam giác
c) Gọi D là trung điểm đối xứng của I qua N. C/M tứ giác ADCI là hình thoi; với điệu kiện nào của tam giác ABC thì tứ giác ADCI là hình vuông
d) Đường thẳng BN cắt DC tại K. Kẻ IH // BK( H thuộc DC). C/M K là trungđiểm của DH và Dk/DC=1/3
Cho tam giác ABC có trực tâm H.Trên nửa mặt phẳng bờ AB chứa điểm C kẽ tia Bx vuông góc với AB, trên nửa mặt phẳng bờ AC chứa điểm B kẽ tia Cy vuông góc với AC, Bx cắt Cy tại D
a) Chứng minh: tứ giác BHCD là hình bình hành.
b)Gọi I là trung điểm của BC. Chứng minh: ba điểm H,I,D thẳng hàng.
c)Đường thẳng vuông góc với BC tại I cắt AD tại K. chứng minh: AH=2IK