a: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=180^0\)
mà \(\dfrac{\widehat{A}}{7}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{2}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{7}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{2}=\dfrac{360^0}{18}=20^0\)
Do đó: \(\widehat{A}=140^0;\widehat{B}=100^0;\widehat{C}=80^0;\widehat{D}=40^0\)
b: Ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc trong cùng phía
nên AB//CD