Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
crewmate

Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) trong đó  \(b\ne0\) . Chứng minh rằng \(c=0\) 

Minh Hiếu
8 tháng 8 2021 lúc 16:35

a+b-c/a+b-c + 2c/a+b-c = a-b-c/a-b-c + 2c/a-b-c

suy ra 2c/a+b-c = 2c/a-b-c

Dấu = xảy ra khi c=0

anbe
8 tháng 8 2021 lúc 16:39

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) 

\(\Leftrightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\) 

\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)

\(\Leftrightarrow\left(b+c-b+c\right)\left(b+c+b-c\right)=0\)

\(\Leftrightarrow4bc=0\)

Do b\(\ne\) 0\(\Rightarrow c=0\)

Vậy c=0 thì thỏa tỉ lệ thức (đcpcm)

Lưu Võ Tâm Như
9 tháng 8 2021 lúc 14:42

undefined


Các câu hỏi tương tự
Hà An Nguyễn Khắc
Xem chi tiết
dream XD
Xem chi tiết
Monkey D Luffy
Xem chi tiết
dream XD
Xem chi tiết
Bùi Trần Thanh Hương
Xem chi tiết
Trần Thị Hương Lan
Xem chi tiết
Jack Viet
Xem chi tiết
Bùi Trần Thanh Hương
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết