Vì \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\Rightarrow a\left(c+d\right)=c\left(a+b\right)\)
\(\Rightarrow ac+ad=ac+cb\)
\(\Rightarrow ad=cb\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(\RightarrowĐPCM\)
Vì \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\Rightarrow a\left(c+d\right)=c\left(a+b\right)\)
\(\Rightarrow ac+ad=ac+cb\)
\(\Rightarrow ad=cb\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(\RightarrowĐPCM\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức là có nghĩa ) :
a) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng tacos tỉ lệ thức sau (giả thiết các tỉ lệ thức đều có nghĩa ) \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{ac}{bd}=\dfrac{a^2-c^2}{b^2-d^2}\) ( với giả thiết các tỉ số đều có nghĩa )
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( với giả thiết các tỉ số đều có nghĩa )
cho tỉ lệ thức:
\(\dfrac{7a+3b}{7a-3b}=\dfrac{7c+3d}{7c-3d}\).CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)(giả sử các tỉ số đều có nghĩa)
Cho các số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}< \dfrac{c}{d}\) . Chứng minh rằng :
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh tỉ lệ thức
\(\dfrac{a}{a-c}=\dfrac{c}{c-d}\)
cho a,b,c là ba số khác 0 thỏa mãn: \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\) (với giả thiết các tỉ số đều có nghĩa). Tính giá trị biểu thức M = \(\dfrac{ab+bc +ca}{a^2+b^2+c^2}\)