\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\a=b\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Thay vào M ta được:
\(M=\dfrac{ab+bc+ac}{a^2+b^2+c^2}=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)
theo đề bài ta có:
\(\Rightarrow\dfrac{abc}{ab+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
\(\Rightarrow M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)