Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
nên \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a\cdot c}{b\cdot d}=\dfrac{bk\cdot dk}{b\cdot d}=k^2\)
\(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(a-c\right)\left(a+c\right)}{\left(b-d\right)\left(b+d\right)}=\dfrac{k\left(b-d\right)\cdot k\cdot\left(b+d\right)}{\left(b-d\right)\left(b+d\right)}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2-c^2}{b^2-d^2}\)