Ta có: BD+CD=BC(D nằm giữa B và C)
nên CD=BC-BD=10-7=3(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác)
hay \(\dfrac{AB}{AC}=\dfrac{7}{3}\)
\(\Leftrightarrow AB=\dfrac{7}{3}AC\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC=\dfrac{15\sqrt{58}}{29}\)
\(\Leftrightarrow AB=\dfrac{7}{3}\cdot\dfrac{15\sqrt{58}}{29}=\dfrac{35\sqrt{58}}{29}\)
Xét ΔABC vuông tại A có
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{\left(\dfrac{35\sqrt{58}}{29}\right)^2}+\dfrac{1}{\left(\dfrac{15\sqrt{58}}{29}\right)^2}=\dfrac{841}{11025}\)
\(\Leftrightarrow AH=\dfrac{105}{29}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=\dfrac{60025}{641}\)
hay \(BH=\dfrac{245}{29}\left(cm\right)\)
Ta có: BD+DH=BH(D nằm giữa B và H)
nên \(DH=BH-BD\)
\(\Leftrightarrow DH=\dfrac{245}{29}-7=\dfrac{42}{29}\left(cm\right)\)
Vậy: \(AH=\dfrac{105}{29}\left(cm\right)\);\(BH=\dfrac{245}{29}\left(cm\right)\); \(DH=\dfrac{42}{29}\left(cm\right)\)