Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Herimone

cho tg ABC vg tại A, đg cao AH. tính chu vi tg ABC, bt AH=14cm, \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

Nguyễn Huy Tú
15 tháng 7 2021 lúc 20:30

Ta có : \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{1}{4}HC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=\left(\dfrac{1}{4}HC\right)HC\Rightarrow256=\dfrac{1}{4}HC^2\)

\(\Leftrightarrow HC^2=1024\Leftrightarrow HC=32\)cm 

\(\Rightarrow HB=\dfrac{1}{4}.32=8\)cm 

=> BC = HB + HC = 32 + 8 = 40 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=8.40=320\Rightarrow AB=8\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=32.40=1280\Rightarrow AC=16\sqrt{5}\)cm 

Chu vi tam giác ABC là : 

\(P_{ABC}=AB+AC+BC=24\sqrt{5} +40\)cm 

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 20:39

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

nên \(HB=\dfrac{1}{4}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC\cdot\dfrac{1}{4}\cdot HC=14^2=196\)

\(\Leftrightarrow HC^2=196:\dfrac{1}{4}=196\cdot4=784\)

hay HC=28(cm)

\(\Leftrightarrow HB=\dfrac{1}{4}\cdot HC=\dfrac{1}{4}\cdot28=7\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)


Các câu hỏi tương tự
D­ương Trần
Xem chi tiết
D­ương Trần
Xem chi tiết
Anbert_An
Xem chi tiết
Thắng Tran Duc
Xem chi tiết
vũ linh
Xem chi tiết
Herimone
Xem chi tiết
Dương Trần
Xem chi tiết
Herimone
Xem chi tiết