\(BC=BH+CH=52\left(cm\right)\)
\(AH=\sqrt{BH.CH}=2\sqrt{105}\) (cm)
\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{130}\left(cm\right)\)
\(AC^2=CH.BC\Rightarrow AC=\sqrt{CH.BC}=2\sqrt{546}\left(cm\right)\)
Ta có: BC=BH+CH(H nằm giữa B và C)
nên BC=10+42=52(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=10\cdot42=420\)
hay \(AH=2\sqrt{105}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=\left(2\sqrt{105}\right)^2+10^2=420+100=520\)
hay \(AB=2\sqrt{130}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=52^2-520=2184\)
hay \(AC=2\sqrt{546}\left(cm\right)\)
BC=BH+CH=10+42=52
AB^2=BH*BC=10*52=520(ĐỊNH LÝ CANH VA ĐƯỜNG CAO)
=>AB=2√130
AC^2=CH*BC=42*52=2184(ĐỊNH LÝ CANH VA ĐƯỜNG CAO)
=>AC=2√546
=>AH^2=BH*CH=10*42=420(ĐỊNH LÝ CANH VA ĐƯỜNG CAO)
=>AH=2√105