Cho x\(\widehat{O}\)y , oz là tia phân giác của x\(\widehat{O}\)y. Trên ox lấy M , trên oy lấy N sao cho OM=ON. Lấy A thuộc oz
Chứng minh rằng AO là tia phân giác M\(\widehat{A}\)N
Cho tam giác ABC, AB=AC. Trên AB lấy M , trên AC lấy N sao cho AM=AN
Chứng minh rằng A\(\widehat{B}\)N=A\(\widehat{C}\)M
Cho \(\Delta ABC\) có AB = AC. D là trung điểm của BC.
a) Chứng minh: \(\Delta ADB\) = \(\Delta ADC\) và AD là tia phân giác của \(\widehat{BAC}\).
b) Vẽ \(DC\perp AD\) tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: \(\Delta AMD\) = \(\Delta AND\) và \(DC\perp AN\).
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: \(\Delta KCD\) = \(\Delta KNE\).
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
Cho \(\Delta ABC=\Delta DIK;\widehat{B}=50^0;\widehat{K}=40^0\). Điền vào chỗ trống :
a) \(\widehat{A}=........\)
b) \(\widehat{I}=........\)
c) \(\widehat{C}=........\)
Cho tam giac ABC co \(\widehat{A}\) =80 do va \(\widehat{C}\) =40 do . Tren AC lay E sao cho \(\widehat{CBE}\) =10 do
1, Tinh \(\widehat{AEB}\)
2, CM \(\widehat{AEB}=\widehat{ABE}\)
Cho \(\Delta ABC\) trên nữa mp bờ AC không chứa B, vẽ điểm M sao cho \(\widehat{MCA}\)= \(\widehat{A}\) và MC= AB. Trên nữa mạt phẳng BC ko chứa A, vẽ điểm N sao cho \(\widehat{NCB}=\widehat{B}\) và NC= AB. Chứng minh rằng:
a) Ba điểm M,C,N thẳng hàng
b) C là trung điểm của MN
c) Kẻ CK \(\perp AB\). Chứng minh CK là trung trực của MN.
Cho \(\Delta ABC=\Delta DEF\). Biết \(\widehat{A}=55^0,\widehat{E}=75^0\)
Tính các góc còn lại của mỗi tam giác ?
Cho \(\widehat{xOy}\) nhọn. Trên Ox,Oy lấy 2 điểm A,B sao cho OA = OB. Vẽ đường tròn tâm A,B có cùng bán kính sao cho chúng cắt nhau tại 2 điểm M,N nằm trong \(\widehat{xOy}\)
C/m : a, ΔOMA = ΔOMB; ΔONA = ΔONB
b, Ba điểm O, M, N thẳng hàng
c, ΔAMN = ΔBMN
d, MN là tia phân giác của \(\widehat{AMN}\)