Cho tam giác ABC vuông tại A. Biết \(2\sqrt{2}sinB.sinC=sinB+sinC\) .
Tính \(tanB+tanC\)
Mn giúp mình câu này với
tana - 3cota=6 và π < α < \(\dfrac{3\Pi}{2}\)
a/ A= sina+cosa
b/ B= 2Sina.cosa
c/ C= \(\dfrac{2sina-tana}{cosa+cota}\)
1; tan x + cot x = m . tìm \(\dfrac{tan^6x+cot^6x}{tan^4+cot^4x}\)
2; sinacosa=\(\dfrac{12}{25}\) . tính sin3a+cos3a
3; cho tana-cota=3 . tính giá trị các biểu thức sau :
a; A= tan2a + cot2a
b; B=tana +cota
c; C= tan4a-cot4a
4; Cho 3sin4x+cos4x = \(\dfrac{3}{4}\) . tính A= sin4x + 3cos4x
Chứng minh các đẳng thức :
a) \(\dfrac{1+(sin)^{2}a}{1-(sin)^{2}a}\)= \(1+2tan^{2}a\)
b) \(tan^{2}a - sin^{2}a = tan^{2}a.sin^{2}a\)
c) \(\dfrac{cosa}{1+sina} + tan a = \dfrac{1}{cosa}\)
d) \(\dfrac{tanx}{sinx} - \dfrac{sinx}{cotx} = cosx\)
Các bạn giúp mình với nha. Cảm ơn ạ
Cho a ,b,c là các số thực không âm thỏa mãn a2+b2+c2=1.chứng minh rằng: c/1+bc + b/1+ca + a/1+bc >= 1
1. Rút gọn biểu thức sau: C = \(sin6x\times cot3x-cos6x\)
2. Chứng minh các đẳng thức sau:
a) \(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
b) \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a+sin^2b}=cot^2a\times cot^2b-1\)
3. Cho \(\Delta ABC\). Chứng minh rằng: \(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times cos\frac{B}{2}\)
4. Chứng minh: Nếu \(sina=2sin\left(a+b\right)\) thì \(tan\left(a+b\right)=\frac{sina}{cosb-2}\)
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!
Cho tam giác ABC các đường cao AH, BK chứng minh
A) 4 điểm A, K , H,B cùng nằm trên 1 đường tròn xác định tâm và bán kính
B) HK<AB
Bài 1: Đổi số đo của các góc sau ra độ, phút, giây bằng 2 cách
a) \(\frac{\pi}{17}\)
b) \(\frac{2}{3}\)
c) -5
d) \(-\frac{2\pi}{7}\)
Trong hệ trục tọa độ Oxy cho A(1;3) B(4;0) C(2;-5) tìm toạ độ M thỏa mãn vectơ MA + vectơ MB -3 MC =vectơ 0