d) Xét tam giác BOH và tam giác BCK ta có:
\(\left\{{}\begin{matrix}\widehat{OBC}=\widehat{KBC}\left(chung\right)\\\widehat{OHB}=\widehat{BKC}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OHB\sim\Delta CKB\left(g-g\right)\)
\(\Rightarrow\dfrac{BO}{CB}=\dfrac{BH}{BK}\left(tsdd\right)\)
\(\Rightarrow BH.BC=BO.BK\)
Xét tam giác COH và tam giác BCI ta có:
\(\left\{{}\begin{matrix}\widehat{OCH}=\widehat{ICB}\left(chung\right)\\\widehat{OHC}=\widehat{BIC}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OHC\sim\Delta BIC\left(g-g\right)\)
\(\Rightarrow\dfrac{CO}{CB}=\dfrac{CH}{CI}\left(tsdd\right)\)
\(\Rightarrow CH.BC=CO.CI\)
Mà \(BH.BC=BO.BK\) (cmt)
Nên CO.CI+BO.BK=CH.BC+BH.BC=BC.BC=BC2