Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi F và K lần lượt là giao điểm của AH với BC, DE
a) Chứng minh: Tứ giác ADHE nội tiếp đường tròn và xác định tâm I của đường tròn.
b) Chứng minh: DB là phân giác của góc EDF và \(\dfrac{KH}{HF}=\dfrac{DK}{DF}\)
c) Đường thẳng CE cắt đường tròn tại điểm thứ hai N, NF cắt đường tròn tại điểm thứ hai P, gọi Q là trung điểm của DF. Chứng minh A, P, Q thẳng hàng
cho tam giác nhọn ABC đường tròn tâm o đường kính BC cắt AB,AC lần lượt tại D,E . hai đường thẳng BD và CE cắt nhau tại H . a,Chứng minh ADHE là tứ giác nội tiếp đường tròn
b,Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tam giacs ADH
c,Cho góc BAC = 60 độ . chứng minh Sabc = Sade
Cho tam giác ABC nhọn, AB < AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a) CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC = KE.KD
c) Gọi M là trung điểm của BC, AK cắt đường tròn (O) tại điểm thứ 2 là N. C/m : 3 điểm M, H, N thẳng hàng
Cho tam giác ABC nhọn (AB>AC) nội tiếp (O). Hai đường cao AD và BE cắt nhau tại H. I là giao điểm của AD với đường tròn, K là giao điểm của AO với đường tròn. Chứng minh:
a) Tứ giác AEDB nội tiếp. Xác định tâm đường trong nội tiếp tứ giác AEDB
b) AD. EC= BE. DC
c) BHCK là hình bình hành
d) AB2- AC2= BI2- HC2
cho tam giác abc nhọn ( AB< AC ) nội tiếp đường tròn (O) có đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh tứ giác ADHE nội tiếp và AD.AB=AE.AC
b) Gọi K là giao điển của DE và BC. Chứng minh tứ giác BCDE nội tiếp và KH bình =KB.KC c) Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCDE. Chứng minh F, H, I thẳng hàng.
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB<AC) hai đường BE,CF của tam giác ABC cắt nhau tại trực tâm H.Vẽ đường kính AD của (O).Gọi K là giao điểm của AH với (O) L,P lần lượt là giao điểm của BC và EF,AC và KD.CM:
1)Tứ giác EHKP nội tiếp và xác định tâm I của đường tròn này,chứng minh I thuộc BC
2)Gọi M là trung điểm của BC.Chứng minh:AH=2OM
3)Gọi T là giao điểm của (O) với đường tròn ngoại tiếp tam giác EFK.Chứng minh:L,K,T thẳng hàng
Cho tam giác nhọn ABC nội tiếp trong đường tròn (O) Các đường cao BD; CE ( D thuộc AC; E thuộc AB) của tam giác kéo dài cắt đường tròn (O) tại các điểm M và N ( M khác B ; N khác C).
1) Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn.
2) Chứng minh MN song song với DE.
3) Khi đường tròn (O) và dây BC cố định điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Chứng minh: bán kính của đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí điểm A để diện tích tam giá ADE đạt giá trị lớn nhất
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Hai đường cao AD, BE cắt nhau tại H (D∈BC, E∈AC).
a) Tứ giác ABDE nội tiếp
b) Tia AO cắt đường tròn (O) tại K (K khác A). CM tứ giác BHCK là hình bình hành.
c) Gọi F là giao điểm của tia CH với AB. Tìm giá trị nhỏ nhất của biểu thức: Q=\(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}\).