HAKED BY PAKISTAN 2011

Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Tuấn Kiệt

Cho tam giác nhọn abc các đường cao AD, BE, CF cắt nhau tại H, gọi O là trung điểm của BC, I là trung điểm của AH, K là giao điểm của EF, OI . 

Chứng minh AH^2= 4.IK.IO

Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 8:36

Ta có: ΔEAH vuông tại E

mà EI là đường trung tuyến

nên IE=IH

=>ΔIEH cân tại I

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)

 nên \(\widehat{IEH}=\widehat{BCE}\)

Ta có: ΔEBC vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOEB cân tại O

=>\(\widehat{OEB}=\widehat{OBE}\)

Ta có: \(\widehat{IEO}=\widehat{IEH}+\widehat{OEH}\)

\(=\widehat{EBC}+\widehat{ECB}=90^0\)

=>ΔIEO vuông tại E

Ta có: ΔAFH vuông tại F

mà FI là đường trung tuyến

nên FI=IH

=>FI=IE

=>I nằm trên đường trung trực của FE(1)

Ta có: ΔBFC vuông tại F

mà FO là đường trung tuyến

nên \(FO=\dfrac{BC}{2}\)

mà EO=BC/2

nên FO=EO

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra IO là đường trung trực của EF

=>IO\(\perp\)EF tại K và K là trung điểm của FE

Xét ΔIEO vuông tại E có EK là đường cao

nên \(IK\cdot IO=IE^2\)

=>\(IK\cdot IO=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2\)

=>\(AH^2=4\cdot IK\cdot IO\)


Các câu hỏi tương tự
Minz Ank
Xem chi tiết
Hue Do
Xem chi tiết
Ngưu Kim
Xem chi tiết
Nguyễn Hoàng trung
Xem chi tiết
illumina
Xem chi tiết
Kiều Lê
Xem chi tiết
Huyền Trang
Xem chi tiết
Huyền Trang
Xem chi tiết
Vũ Anh Quân
Xem chi tiết