Cho tam giác MNP có MN = MP, I là trung điểm của cạnh NP. Chứng minh rằng: a) Góc N = Góc P b) MI là phân giác của góc NMP. c) MI vuông góc với NP. cảm ơn trước nha!!!! (nếu chơi freefive cho xin id game)
Cho tam giác MNP có MN=MP, I là trung điểm NP. chứng minh:
a)góc N=góc P
b) MI là phân giác góc NMP
c) MI là trung trực NP
cho ΔMNP vuông tại N. Tia phân giác của góc M cắt NP ở E. Kẻ vuông góc vs MP(K∈MP). Gọi B là giao điểm của NM và KE. Chứng minh rằng:
a)ΔNME=ΔKME
b) tam giác MNK cân
c)NK//BP
giúp mik câu c vs ạ!
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
cho tam giác ABC cân tại A, vẽ BH vuông góc với AC tại H, vẽ CK vuông góc với AB tại K A) chứng minh tam giác BHC bằng tam giác CKB B) chứng minh tam giác AHK cân C) chứng minh HK // BC D)gọi O là giao điểm của BH và CK, M là trung điểm của BC.Chứng minh ba điểm A,O,M thẳng hàng
Cho tam giác MNP vuông tại M có MN = 3cm. MP = 4cm.
a) Tính độ dài NP.
b) Trên tia MN lấy điểm D sao cho N là trung điểm của MD. Từ N vẽ đường thẳng vuông góc với MD cắt PD tại E. Chứng minh rằng tam giác MDE cân tại E.
c) Trên tia đối của tia EM lấy điểm F sao cho EM = EF. Từ F kẻ FI vuông góc với NE tại I. Chứng minh rằng FI = ND.
d) Chứng minh 3 điểm F, I, P thẳng hàng.