a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b: Ta có: \(AE\cdot AB=AF\cdot AC\)
nên AE/AC=AF/AB
Xét ΔAEF và ΔACB có
AE/AC=AF/AB
góc CAB chung
Do đó: ΔAEF\(\sim\)ΔACB