Cho tam giác ABC. Gọi D là điểm xác định bởi : \(\overrightarrow{AD}=\dfrac{3}{4}\overrightarrow{AC}\). I là trung điểm của BD. M là điểm thỏa mãn \(\overrightarrow{BM}=x\overrightarrow{BC},\left(x\in R\right)\)
a) Tính \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) Tính \(\overrightarrow{AM}\) theo \(x,\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Tính \(x\) sao cho A, I, M thẳng hàng
Cho tam giác ABC, Tìm tập hợp diểm M sao cho:
a) \(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho các điểm A, B, C trên trục \(\left(o;\overrightarrow{e}\right)\) có tọa độ lần lượt là : \(5;-3;-4\). Tính độ dài đại số của \(\overrightarrow{AB};\overrightarrow{BA};\overrightarrow{AC};\overrightarrow{BC}\) ?
Cho hình chữ nhật ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.
a) Với điểm M tùy ý , hãy chứng minh :
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)
b) Chứng minh rằng :
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)
Tứ giác ABCD là hình gì nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) và \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|\) ?
Cho tam giác ABC ,biết A (1;2), B(-1;1), C(5;-1)
a.Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
b.Tính cos và sin góc A
c. Tìm tọa độ chân đường cao tam giác ABC
Cho \(\overrightarrow{a}=\left(2;-2\right);\overrightarrow{b}=\left(1;4\right)\)
a) Tính tọa độ các vectơ \(\overrightarrow{a}+\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\) và \(2\overrightarrow{a}+3\overrightarrow{b}\)
b) Hãy phân tích vectơ \(\overrightarrow{c}=\left(5;0\right)\) theo hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\)
Cho hai điểm A và B. Điểm M thỏa mãn điều kiện \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
Chứng minh rằng \(OM=\dfrac{1}{2}AB\), trong đó O là trung điểm của AB ?
Cho \(\overrightarrow{a}=\left(2;1\right);\overrightarrow{b}=\left(3;-4\right);\overrightarrow{c=}\left(-7;2\right)\)
a) Tìm tọa độ của vectơ \(\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}\)
b) Tìm tọa độ vectơ \(\overrightarrow{x}\) sao cho : \(\overrightarrow{x}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\)
c) Tìm các số k và h sao cho : \(\overrightarrow{c}=k\overrightarrow{a}+h\overrightarrow{b}\)