1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
1.Cho tam giác ABC đều cạnh a, có AH là đường trung tuyến.Tính \(\overrightarrow{AC}\)+\(\overrightarrow{AH}\)
2.Cho hình chữ nhật ABCD tâm O gọi M; N lần lượt là trung điểm OA và CD biết MN = a.AB +b. AB .Tính a + b
3. Cho hình bình hành ABCD có N là trung điểm của AB và G là trọng tâm của tam giác ABC. Phân tích vectơ GA theo vectơ BD và vectơ NC
4.Cho tam giác ABC . Gọi M là điểm xác định :\(\overrightarrow{4BM}\)-\(\overrightarrow{3BC}\)=\(\overrightarrow{0}\) .Khi đó \(\overrightarrow{AM}\) =?
5. CHo tam giác đều ABC canh 2a, trong tâm G. TÍNH độ dài \(\overrightarrow{AB}-\overrightarrow{GC}\)
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
Đường Tròn (I) Nội Tiếp tam giác ABC, Tiếp Xúc với các cạnh BC, CA, AB lần lượt tại M N P. Chứng minh rằng \(a\overrightarrow{IM}+b\overrightarrow{IN}+c\overrightarrow{IP}=0\)
1/ Cho tam giác ABC và trung tuyến CM tìm và dựng điểm E sao cho :
\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=\overrightarrow{0}\)
2/Cho 1 hình thang ABCD .Gọi M,N theo thứ tự là các trung điểm của các cạnh bên AD , BC . Biết \(\overrightarrow{AB}=\overrightarrow{u},\overrightarrow{BC}=\overrightarrow{v}\). Hãy biểu diễn \(\overrightarrow{MN},\overrightarrow{AM},\overrightarrow{CN}\) theo \(\overrightarrow{u}\) và \(\overrightarrow{v}\)
Cho tam giác ABC, gọi M là trung điểm AB, D là trung điểm BC, N thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN. Biểu diễn \(\overrightarrow{KD}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m - n = ...
cho tam giác ABC đều cạnh 2a. Trên cạnh AB lấy M sao cho AM=2MB, trên cạnh BC lấy N sao cho 2BN=3NC. Tính độ dài vecto \(\overrightarrow{AN}-\overrightarrow{CM}\) theo a
Cho tứ giác ABCD, trên AB, CD lần lượt lấy điểm M, N sao cho \(\overrightarrow{AM}=k\overrightarrow{AB}\) , \(\overrightarrow{DN}=k\overrightarrow{DC}\) \(\left(k\ne1\right)\).
a, Phân tích \(\overrightarrow{MN}\) theo \(\overrightarrow{AD}\) và \(\overrightarrow{BC}\)
b, Gọi P, Q, I lần lượt là các điểm thuộc các cạnh AD, BC, MN sao cho \(\overrightarrow{AP}=l\overrightarrow{AD},\overrightarrow{BQ}=l\overrightarrow{BC},\overrightarrow{MI}=l\overrightarrow{MN}\). Chứng minh rằng: I, Q, P thẳng hàng
1. Cho \(\Delta ABC\) . gọi M là điểm thuộc cạnh AB, n là điểm thuộc cạnh AC sao cho \(AM=\frac{1}{2}AB\) , \(AN=\frac{3}{4}AC\) . gọi O là giao điểm của CM và BN. trên đường thẳng BC lấy E. đặt \(\overrightarrow{BE}=x\overrightarrow{BC}\)
a) Phân tích \(\overrightarrow{AO}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
b) tìm x để A,E,O thẳng hàng
2. cho tam giác ABC đều cạnh \(2\sqrt{3}\) , d là đường thẳng qua B và tạo với AB 1 góc 600 \(\left(C\notin\Delta\right)\) . tìm GTNN của \(A=\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)