Bài 4: Khái niệm hai tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thoại Đình

Cho tam giác DEF ~ tam giác ABC theo tỉ số đồng dạng k = 3/5  . a) Tính tỉ số chu vi của hai tam giác đã cho. b) Cho biết hiệu chu vi của hai tam giác trên là 40dm, tính chu vi mỗi tam giác.

Hồng Nhan
3 tháng 3 2021 lúc 18:48

a)

\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)

⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\)              (1)

Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\)                 (2)

Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\)           (*)

b)

Theo đề ra, ta có:

\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)

⇒ \(C_{ABC}=40+C_{A'B'C'}\)      (**)

Thay (**) vào (*), ta được:

\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)

⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)

⇔ \(2C_{A'B'C'}=120\)

⇒ \(C_{A'B'C'}=60\)     (dm)

⇒ \(C_{ABC}=40+60=100\)   (dm)


Các câu hỏi tương tự
trần vũ hoàng phúc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Helen Ngân
Xem chi tiết
Tattoo mà ST vẽ lên thôi
Xem chi tiết
Phạm Ngọc Ánh
Xem chi tiết
quynh nhu nguyen
Xem chi tiết
C H I I
Xem chi tiết
Nguyễn Giang
Xem chi tiết
♊Ngọc Hân♊
Xem chi tiết