Cho tam giác cân ABC cân tại A. Tia phân giác của góc BAC cắt cạnh BC
tại M.
1) Chứng minh tam giác AMB = tam giác AMC.
2) a- Biết góc BAC = 500. Tính góc ABC và góc ACB.
b- Biết BC = 6 cm; AM = 4 cm. Tính độ dài AB, AC?
3) Kẻ ME vuông góc AB tại E, MF vuông góc AC tại F. Chứng minh tam giác AEF cân.
4) Kẻ EI vuông góc BC tại I. Gọi K là giao của đường thẳng EI và đường thẳng AC. Chứng
minh A là trung điểm của đoạn KF.
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A