Cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BD = BA, từ D vẽ đường thẳng vuông góc BC cắt AC tại E và tia BA tại F.
a) Chứng minh: ∆ABE = ∆DBE và so sánh đoạn EF với đoạn ED.
b) Chứng minh: ∆ CEF cân
c) Gọi M là trung điểm CF. Chứng minh: B, E, M thẳng hàng.
Vẽ hình giúp mình luôn nha mng :33
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
4/. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm
a/ Tính BC
b/ Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh
DBC = DCB.
c/Trên tia BD lấy điểm E sao cho DE = DC, Cm: ∆ BEC vuông => DF là phân giác góc ADE.
d/ Chứng minh: BE FC
Cho tam giác ABC vuông tại A có góc ACB= 30° trên cạnh BC lấy điểm D sao cho BA=BD tia phân giác của góc B cắt AC tại I 1, chứng minh tam giác BAD đều 2, chứng minh tam giác IBC cân 3, chứng minh D là trung điểm của BC 4, cho AB=6cm tính BC, AC 5, trên tia đối của tia ID lấy diểm E sao cho IE=IC chứng minhED=AC 6, tam giác ACE là tam giác gì ? Vì sao?
Cho tam giác ABC vuông tại A có AB = 6cm, BC =10 cm.
a. Tính độ dài cạnh AC rồi so sánh các góc trong tam giác ABC.
b. Gọi trung điểm của AC là M. Vẽ đường thẳng vuông góc với AC tại M, đường thẳng này cắt AC tại I. Chứng minh tam giác AIM = tam giác CIM.
c. Chứng minh AI =\(\dfrac{1}{2}\) BC.
d. Hai đoạn thẳng BM và AI cắt nhau tại G. Chứng minh BC = 6.IG.
Cho tam giác ABC vuông tại A . Trên tia đối của tia AB lấy D sao cho AD=AB a) CM: Tam giác CBD là tam giác cân b) gọi M là trung điểm của CD đường thẳng qua D và // với BC cắt đường thẳng BM tại E. Cm: BC= DE vã BC+BD>BE c) gọi G là giao điểm. Của AE và DM. Cm: BC=6GM
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
cho ∆abc vuông tại a tia phân giác của góc ABC cắt ac tại i kẻ ih vuông bc. Gọi k là giao điểm của ab và hi. Chứng minh rằng : a. ∆abi = ∆hbi b. Bi là đg trung trực của đoạn thẳng ah c. ∆abh là tam giác đều d. Bi vuông ck
Cho tam giác ABC có AC=6cm, AB= 10cm,BC=8cm. Trên cạnh AB lấy điểm D sao cho AD=AC. Kẻ qua D đường vuông góc với AB cắt BC tại E, AE cắt CD tại I. CMR:
a) Tam giác ABC vuông tại C
b) AE là trung trực của CD
c) Gọi M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB