a) Xét ΔABM và ΔACB có
\(\widehat{ABM}=\widehat{ACB}\)(gt)
\(\widehat{A}\) chung
Do đó: ΔABM∼ΔACB(g-g)
a) Xét tam giác ABM và ACB:
Góc ABM= góc ACB(gt)
Góc A chung
=>Tam giác ABM đồng dạng ACB(g.g)
a) Xét ΔABM và ΔACB có
\(\widehat{ABM}=\widehat{ACB}\)(gt)
\(\widehat{A}\) chung
Do đó: ΔABM∼ΔACB(g-g)
a) Xét tam giác ABM và ACB:
Góc ABM= góc ACB(gt)
Góc A chung
=>Tam giác ABM đồng dạng ACB(g.g)
Bài 1: Cho tam giác ABC. Tia phân giác góc A cắt BC tại M.
a) Tính AB biết AC = 6cm, MC = 2cm, BC = 5cm
b) Kẻ BH vuông góc AM, CK vuông góc AM. Chứng minh tam giác ABH đồng dạng tam giác ACK
c) Chứng minh AB . MK = AC . MH
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh rằng: a) Tam giác BHE đồng dạng tam giác BAH b) Tứ giác AEHF là hình chữ nhật c) AH bình = AF . AC d) CH bình = CF . CA e) Tam giác AEF đồng dạng tam giác ACB
cho tam giác nhọn abc,ac các đường cao BM,CN cắt nhau tại p a)tam giác ABM đồng dạng tam giác ACN b)cm;BN.CP=CM.BP c)cm:tam giác AMN đồng dạng tam giác ABC
help me chỉ cho mình câu c với mình biết làm a và b
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HM vuông góc với AB tại M . HN vuông góc với AC tại N
a) Cm ; tứ giác AMHN là hình chữ nhật
b) Cm : tam giác ABH đồng dạng với tam giác CAH
c) Tính MN
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân