Bài 1: Cho tam giác ABC,trên nửa mặt phẳng bờ là AC không chứa điểm B.Lấy điểm D bất kì.Gọi M,N,P,Q lần lượt là trung điểm của AB,AC,CD,AD
1)Chứng minh: MN//PQ và MQ//NP
2)Chứng minh: MN+NP+PQ+MQ=AC+BD
Bài 2: Cho tam giác ABC cân tại A có M là trung điểm của đường cao AH,đường thẳng CM cắt AB tại D.Kẻ Hx//CD và cắt AB tại E
1)Chứng minh: DA=DE
2)Chứng minh: AB=3AD
3)Chứng minh: CD=4MD
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng: \(AM=\frac{DE}{2}\)
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC có A nhọn . Trên nửa mặt phẳng bờ AC không chứa C . Vẽ tia Ax vuông góc với BC . Trên tia Ax lấy điểm D sao cho AD =AB . Trên nửa Mặt phẳng bờ AC không chứa điểm B. Vẽ tia Ay vuông góc với AC . Trên tia Ax lấy điểm E sao cho AE = AC . Gọi M là trung điểm của BC .
Chứng minh rằng : AM = \(\frac{1}{2}\) DE
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
Cho tam giác ABC , M là trung điểm của BC . TRên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB . Trên tia đó lấy điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC . Chứng minh rằng :
a, AM = \(\frac{DE}{2}\)
b, AM vuông góc với DE
Cho tam giác ABC , M là trung điểm BC . Trên nửa mặt phẳng không chứa điểm C có bờ AB, vẽ tia Ax vuông góc AB . Trên tia đó lâý điểm D sao cho AD = AB . Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc AC . Trên tia đó lấy điểm E sao cho AE = AC . Chứng minh:
a)AM = \(\frac{DE}{2}\)
b) AM vuông góc DE
c) DC vuông góc BE
Bài1: Cho tam giác ABC ( góc A<90o ) , M là trung điểm của canh BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a. Chứng minh : AC=BD
b. Chứng minh : AC//BD
c. Trên nửa mặt phẳng bờ AC không chứa điểm B , vẽ tia Ax⊥Ac. Trên tia Ax lấy điểm F sao cho AF=AC. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ tia Ay ⊥AB. Trên tia Ay lấy điểm E sao cho AE=AB. Chứng minh EF=AD
Cho tam giác ABC có AB=BC M là trung điểm BC A/CM tam giác ABM=tam giác ACM B/ Trên tia đối của tia MA lấy điểm D sao cho MD= MA.CM AC= BD C/ CM AB// CD D/ Trên nửa mặt phẳng bờ là AC không chứa điểm B ,vẽ tia Ax //BC ,lấy I thuộc Ax dao cho lAI = BC.CM D, C, I thẳng hàng