Do ∆ABC = ∆DEF (gt)
⇒ ∠A = ∠D = 70⁰
∆ABC có:
∠A + ∠B + ∠C = 180⁰ (tổng ba góc trong ABC)
⇒ ∠C = 180⁰ - (∠A + ∠B)
= 180⁰ - (70⁰ + 50⁰)
= 60⁰
ΔABC=ΔDEF
=>\(\widehat{A}=\widehat{D}=70^0\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}+70^0+50^0=180^0\)
=>\(\widehat{C}=180^0-120^0=60^0\)
Có: \(\Delta ABC=\Delta DEF\)
\(\Rightarrow\widehat{A}=\widehat{ D}\) (hai góc tương ứng)
Mà: \(\widehat{D}=70^o\)
nên \(\widehat{A}=70^o\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí tổng các góc trong tam giác)
\(\Rightarrow70^o+50^o+\widehat{C}=180^o\) (vì \(\widehat{A}=70^o;\widehat{B}=50^o\))
\(\Rightarrow120^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-120^o=60^o\)
Vậy: \(\widehat{C}=60^o\).
Vì tam giác ABC=DEF nên góc A = góc D = 70o (2 góc tương ứng)
Vì góc góc A+ góc B+ góc C=180o = 70o + 50o + góc C=180o
⇒Góc C= 180o-(70o+50o)=60o