Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB
Cho tam giác ABC vuông tại A , đường cao AH , I là trung điểm của AC , IF vuông góc với BC ( F thuộc BC ) , CE vuông góc với AC ( E là giao điểm của CE với tia IF ) . G, K lần lượt là giao điểm của AH, AE với BI .CM :
a, Tam giác IHE = Tam giác ICE , tính góc IHE
b, Tam giác IHE đồng dạng với tam giác BHA ; tam giác BHI đồng dạng với tam giác AHE
c, AE vuông góc với BI
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
Tam giác ABC vuông tại A, có đường cao AH. M, N lần lượt là trung điểm của AH, BH.
a) Cm: tam giác HMN đồng dạng tam giác HAB.
b) Cm: HM.HA=HN.HC
c) Cm: tam giác AHN đồng dạng tam giác CHM.
d) Gọi K là giao điểm của MN với AC, I là giao điểm của CM với AN. Cm: KM là tia phân giác góc IKH.
Cho tam giác ABC vuông A, AB<AC, đường cao AH.
a. CM tam giác HBA ~tam giác ABC suy ra AB*AB=BH*BC
b. Qua B vẽ đường thẳng // AC cắt AH tại D. CM HA.HB=HC.HD
C. CM AB.AB=AC.BD
d. Gọi K trung điểm AH . Trên đoạn AC lấy N sao cho góc HBK = ABN. Gọi M là trung điểm BD. cm M, H, N thẳng hàng
Cho tam giác ABC , trung tuyến AI , đường phân giác của góc AIB cắt AB tại D, tia phân giác của góc AIC cắt AC tại E a) cm AD/DB=AE/EC và DE // BC AI cắt DE tại O . cm O là trung điểm DE biết BC = 20cm AI = 15 tính DE
cho tam giác ABC vuông tại A , đường cao AH , P và Q lần lượt là trung điểm của BH và AH . CM : tam giác ABP đồng dạng tam giác CAQ,AP VUÔNG GÓC VỚI CQ