Áp dụng định lý Pi-ta-go trong △BHA vuông tại H⇒AB2=AH2+BH2=AH2+81
Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có đường cao AH⇒\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2+81}+\dfrac{1}{400}=\dfrac{400+AH^2+81}{400\left(AH^2+81\right)}=\dfrac{481+AH^2}{400\left(AH^2+81\right)}\Rightarrow400\left(AH^2+81\right)=AH^2\left(481+AH^2\right)\Rightarrow400AH^2+32400=481AH^2+AH^4\Rightarrow AH^4+81AH^2-32400\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có đường cao AH⇒AH2=BH.CH⇒\(CH=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\left(cm\right)\)
Ta có BC=CH+BH=9+16=25(cm)
Ta có: AC2 = CH.BC
<=> AC2 = (BC - BH) . BC
<=> 202 = (BC - 9) . BC => BC = \(\left[{}\begin{matrix}16cm\left(n\right)\\-25cm\left(l\right)\end{matrix}\right.\)
Ta có: AH2 = BH.CH
<=> AH2 = 9 . (16 - 9 ) => AH \(\approx\) 7,9cm