b) Đường thẳng OP là tiếp tuyến của đường tròn ngoại tiếp tam giác MNP. Cho nửa đường tròn (O) đường kính AB và một điểm P trên nửa đường tròn. Gọi Q là một điểm trên đường kính AB. Qua Q kẻ đường vuông góc với AB cắt BP tại M, cắt AP tại N. Tiếp tuyến của nửa đường tròn ở P cắt MN ở I. Chứng minh: a) Tứ giác QNPB và AQPM là các tứ giác nội tiếp
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
Cho đường tròn tâm O, đường kính AB. Lấy hai điểm C và D theo thứ tụ trên cung AB. Hai đường thẳng AC và BD cắt nhau tại M. Chứng minh đường kính đường tròn ngoại tiếp tam giác MCD vuông góc với AB
Cho nửa đường tròn (O) đường kính AB. Điểm C di chuyển trên một nửa đường tròn. Qua B và C kẻ các tiếp tuyến với nửa đường tròn, các tiếp tuyến đó cắt nhau tại D. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt tiếp tuyến tại B và C lần lượt ở E và G.
a, Chứng minh BC vuông góc với OD
b, Chứng minh OG=OE
c, Chứng minh AG là tiếp tuyến của nửa đường tròn (O). Tìm vị trí của điểm C trên nửa đường tròn để diện tích tam giác GED đạt giá trị nhỏ nhất?
GIÚP MIK VS Ạ!
MIK CẢM ƠN TRC Ạ!!!
Cho tam giác ABC có AB = AC nội tiếp đường tròn tâm O, đường cao AH
của tam giác cắt đường tròn (O) tại D
a) Chứng minh rằng AD là đường kính của đường tròn tâm O
b) Tính góc ACD
c) Cho BC = 12cm, AC = 10cm. Tính AH và bán kính của đường tròn tâm O
(ko cần vẽ hình)
Cho tam giác ABC (AB < AC) có hai đường cao BD và CE cắt nhau tại H. Lấy I là trung điểm của BC.
a) Gọi K là điểm đối xứng của H qua I. CMR: tứ giác BHCK là hình bình hành
b) Xác định tâm O của đường tròn qua các điểm A, B, K, C
c) Chứng minh: OI // AH
d) CMR: BE.BA + CD.CA = \(BC^2\)
Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh: CH=DK
(vẽ hình giúp mình luôn nha)
Cho tam giác abc cân tại A nội tiếp đường tròn (O;R). Vẽ đường tròn (O;R1)(với R1<R) cắt cạnh AB,AC lần lượt tại E,F và M,N.Cmr MN=EF