Bài 10: Đường thẳng song song với một đường thẳng cho trước

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC vuông tại A. Lấy M là một điểm bất  kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE

a) Chứng minh rằng ba điểm A, O, M thẳng hàng

b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?

c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?

Thien Tu Borum
21 tháng 4 2017 lúc 15:58

Bài giải:

a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900

nên ADME là hình chữ nhật

O là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng

b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:

Cách 1:

Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).

Suy ra OK=12AHOK=12AH

Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.

Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.

Thien Tu Borum
21 tháng 4 2017 lúc 15:56

a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900

nên ADME là hình chữ nhật

O là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng

b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:

Cách 1:

Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).

Suy ra OK=12AHOK=12AH

Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.

Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.


=

nguyen thi vang
30 tháng 8 2017 lúc 20:45

Bài giải:

a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900

nên ADME là hình chữ nhật

O là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng

b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:

Cách 1:

Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).

Suy ra OK=12AHOK=12AH

Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.

Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.




Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
 nguyễn hà
Xem chi tiết
URED NI
Xem chi tiết
Nguyen An
Xem chi tiết
Phương Linh Nguyễn
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
BuBu siêu moe 방탄소년단
Xem chi tiết
Nguyễn Văn Khôi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết