a: Xét tứ giác AEGK có
GK//AE
GK=AE
Do đó: AEGK là hình bình hành
mà \(\widehat{KAE}=90^0\)
nên AEGK là hình chữ nhật
a: Xét tứ giác AEGK có
GK//AE
GK=AE
Do đó: AEGK là hình bình hành
mà \(\widehat{KAE}=90^0\)
nên AEGK là hình chữ nhật
Cho tam giác ABC nhọn, M là trung điểm của AC. Từ A kẻ đường thẳng song song với BC, đường thẳng này cắt tia BM ở D a) Tứ giác ABCD là hình gì? Vì sao? b) Gọi H,I lần lượt là trung điểm của AB và CD . Chứng minh AI//CH c) Tam giác ABC cần thêm điều kiện gì để tứ giác ABCD là hình chữ nhật? d) Tam giác ABC cần thêm điều kiện gì để tứ giác AHCI là hình chữ nhật?
Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt hai cạnh AB và
AC lần lượt tại D và E. Gọi M và N lần lượt là trung điểm của DE và BC. Chứng minh rằng:
a) Ba điểm A, M, N thẳng hàng;
b) MN =
2
BC DE
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE AB; HF AC. Từ A vẽ một
đường thẳng vuông góc với EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC.
Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, vẽ đường thẳng vuông góc với BC cắt các đường thẳng AB, AC lần lượt tại N và M. gọi H và K lần lượt là trung điểm của BC và MN. Chứng minh rằng tứ giác AKDG là hình chữ nhật
Cho tam giác ABC vuông tại A, điểm d thuộc cạnh BC, gọi E và F lần lượt là hình chiếu của D trên AB và AC a) Chứng minh tứ giác AEDF là hình chữ nhật b) gọi I là trung điểm của EF. Chứng minh A,I,D thẳng hàng
Bài 5. Cho tam giác ABC có đường cao AH. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Vì sao?
b) Kẻ MI vuông góc BC tại I, NK vuông góc BC tại K. Chứng minh tứ giác MIKN là hình chữ nhật
c) So sánh IK và BC
Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH, M là một điểm bất kì trên cạnh BC. Qua M kẻ các đường thẳng song song với AB và AC, chúng cắt các cạnh AC và AB theo thứ tự ở E và D. a) Tứ giác ADME là hình gì? Vì sao? b) Tính hat DHE c) Lấy điểm I đối xứng với M qua D, điểm K đối xứng với M qua E. Chứng minh I, A, K thẳng hàng. d) Xác định vị trí của điểm M để đoạn thẳng DE có độ dài nhỏ nhất?
Cho tam giác ABC vuông tại A (AB<AC). Lấy M,E lần lượt là trung điểm cạnh BC, kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a) Chứng minh ADME là hình chữ nhật
b) Chứng minh DBME là hình bình hành
c) Kẻ đường cao AH của tam giác ABC. Chứng minh DEMH là hình thang cân
Cho tam giác ABC vuông tại A trung tuyến AM. Kẻ MD vuồn góc với AB, ME vuông góc với AC. a) c/m tứ giác ADME là hình chữ nhật. b) Lấy điểm I sao cho D là trung điểm IM. Tứ giác AMBI là hình gì. c) Tìm điều kiện của tam giác ABC để tứ giác AMBI là hình vuông
cho tam giác ABC vuông tại A, gọi I là trung điểm của BC, Từ I kẻ IM vuông góc AB ( M thuộc AB), kẻ IN vuông góc AC (N thuộc AC)
a) chứng minh tứ giác AMIN là hình hình chữ nhật
b) gọi D là điểm đối xứng với a qua I. Tứ giác ABDC là hình gì
c) tìm điều kiện của tam giác ABC để hình chữ nhật AMIN là hình vuông