Cho tam giác ABC nhọn (AB<AC). Gọi D là trung điểm của cạnh BC. Trên tia đối của tia DA lấy E sao cho DA=DE. Kẻ BM vuông góc với AD tại M, CN vuông góc với DE tại N.
a, Cm tam giác ABD= tam giác ECD. Suy ra AB//CE.
b, Cm BM // CN và BM=CN
c, Kẻ AH vuông góc với BD tại H, EK vuông góc với DC tại K. Đoạn AH cắt BM tại O, đoạn EK cắt CN tại I. Cm O,D,I thẳng hàng.
cho tam giác abc vuông tại a cs gcs b =35 độ
a , tính góc c
b trên cạch bc lấy điểm d sao cho bd = ba tai phân giác của góc b cắt ac ở điểm e. cmr tam giác bea = tam giác bed
c, qua c, vẽ đg thẳng vuông tại be tại h.ch cắt đg thẳng ab tại f .cmr chia bf
=bc
Tam giác abc vuông tại a.Tia phân giác của góc B cắt tại D.Lấy điểm E trên BC sao cho BA=BE.Hãy a, Tính góc BED b,chứng minh: DB là phân giác của góc ADE
Cho tam giác ABC có góc A = 60 độ. Các tia phân giác của góc B và C lần lượt cắt các cạnh AC và AB tại D và E.
a, Chứng minh BE + CD = BC
b, Gọi I là giao điểm của BD và CE. Tính số đo các góc của tam giác IDE
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc với BC. Chứng minh rằng AB = BE ?
Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC các tam giác vuông tại A là ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng :
a) DM = AH
b) MN đi qua trung điểm của DE
Cho tam giác ABC vuông tại A,Tia phân giác góc B cắt AC ở D ,kẻ DE vuông góc BC .Chứng Minh rằng
a.tam giác ABD=tam giác EBD
b.AB=BE