a . Xét ΔABC ⊥ tại A , ta có :
\(\widehat{ABC} \) + \(\widehat{ACB}\) = 90o ( 2 góc nhọn phụ nhau )
35o + \(\widehat{ACB}\) = 90o
⇒ \(\widehat{ACB}\) = 55o
b . Xét ΔBEA và ΔBED, ta có :
\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\\widehat{ABE}=\widehat{DBE}\\BE-BE\end{matrix}\right.\)
⇒ ΔBEA = ΔBED ( cạnh chung )
thêm vào chỗ góc ABE = góc DBE là ( BE là tia pg của góc ABC ) và BE=BE ( cạnh chung ) hộ mình nhá :3
C. Xét ΔBFH và ΔBCH, ta có :
\( \begin{cases} BH = BH ( cạnh chung )\\ \widehat{BHF }= \widehat{BHC} ( = 90 độ )\\ \widehat {FBH} = \widehat{CBH} ( BE là tia phân giác của \widehat{ABC} \end{cases}\)
⇒ ΔBFH = ΔBCH ( g_c_g )
⇒ BF = BC ( 2 cạnh tương ứng )