Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)
Cho tam giác abc vuông tại a, đường cao ah. Gọi p, q lần lược là trung điểm của ah, bh. Gọi klaf giao điểm aq và cp. Chứng minh A, tam giác abc đồng dạng tam giác cah B, pq//ab, aq vuông góc cp C, cho biết ah=6cm. Tính pc,pk
Cho tam giác ABC vuông tại A có AH là đường cao Vẽ HD vuông AB ( D Thuộc AB) HE vuông EC ( E thuộc AC). AB= 12 cm, AC= 16cm
a) Chứng minh Tam giác HAC Đồng dạng Tam giác ABC
b) Chứng minh \(AH^2\) = AD.AB
c) Chứng minh tam giác ACB đồng dạng tam giác ADE
Giúp với đag cần gấp
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) Cm: tam giác HAC đồng dạng tam giác ABC
b) CHo AB = 6cm, AC= 8cm. Tính Ah, BC
c) Gọi E, F lần lượt là trung điểm của BH, AH. Gọi G là giao điểm của CF và AE. Tính tỉ số diện tích của tam giác AGF và tam giác CGE
Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE
c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC