Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho △ABC vuông tại A ,đường cao AH
a, Cho biết BH= 4 cm, CH= 2 cm. Tính AC, AB ?
b, Vẽ HD ⊥ AB tại D , HE ⊥ AC tại E . Chứng minh :
BD=BC.Cos3B ; DE3=BD.CE.BC
Nhờ mọi người giúp mk với
Cho ΔABC vuông tại A, đường cao AH, AB = a, AC = b. Gọi K là hình chiếu của H trên AB.
a) Cm: \(\frac{HB}{HC}=\frac{a^2}{b^2}\)
b) Cm: \(HK=\frac{a^2b}{a^2+b^2}\)
c) Giả sử \(\frac{a}{b}=\frac{3}{4}\) và AH = 12. Tính AB, AC, BC, HB, HC
Cho tam giác ABCvuông tại A, đường caoAH. Biết AB 3cm,AC 4cm
a) Tính AH
b) Gọi D,E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng
Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)