Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC
cho △ABC vuông ở A,AB<AC. kẻ AH ⊥BC ở H, Kẻ HD⊥AB ở D,Kẻ HE⊥AC ở E
a. biết AB=3 cm,HC=3,2 cm. tính độ dài BC,AC
b. cmr DE3=BD.CE.BC
c.Đường thẳng qua B vuông góc với BC cắt HD tại M,đường thẳng qua C vuông góc BC cắt HE tại N.CMR M,A,N thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. D, E lần lượt là hình chiếu của AH trên AB, AC. Từ B vẽ đường thẳng vuông góc với BC cắt HD tại M, Từ C kẻ đường thẳng vuông góc với BC cắt HE tại N.
a, Chứng minh M,A, N thẳng hàng
b,Chứng minh BN, CM,DE đồng quy
Cho \(\Delta ABC\) vuông tại A , đường cao AH. Vẽ \(HD\perp AB\) \(\left(D\in AB\right)\), \(HE\perp AC\) \(\left(E\in AC\right)\) . C/minh: \(DE^3=BD.CE.BC\)
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy