\(HC=\dfrac{8^2}{6}=\dfrac{64}{6}=\dfrac{32}{3}\left(cm\right)\)
BC=32/3+6=32/3+18/3=50/3(cm)
\(AB=\sqrt{6\cdot\dfrac{50}{3}}=10\left(cm\right)\)
\(AC=\sqrt{\dfrac{32}{3}\cdot\dfrac{50}{3}}=\dfrac{40}{3}\left(cm\right)\)
Áp dụng định lí Pitago cho tam giác \(BHA\) vuông tại H, ta có:
\(BH^2+HA^2=AB^2\Rightarrow AB=\sqrt{6^2+8^2}=\sqrt{100}=10\)
Ta có: \(tg\widehat{ABH}=\dfrac{BH}{AB}=\dfrac{6}{10}\Rightarrow\widehat{ABH}=30^{\circ}57'\)
Nhận thấy \(\widehat{BAH}=\widehat{BCA}\Rightarrow AC=ABtg\widehat{BCA}=\dfrac{10AB}{6}=\dfrac{50}{3}\).
