Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Người Bí Ẩn

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn (C), bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai là D.                                             a) Chứng minh BD là tiếp tuyến của đường tròn (C)                                                         b) Qua C kẻ đg thẳng vuông góc với BC cắt tia BA,BD thứ tự E,F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB,BD lần lượt P,Q. Cm: góc BEF = góc PCQ và 2 căn PE.QF =EF. Giúp mình với mn ơi

Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 11:51

a: Ta có: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}\)

mà \(\widehat{CAB}=90^0\)

nên \(\widehat{CDB}=90^0\)

=>BD là tiếp tuyến của (C)

b: Xét (C) có

PA,PM là các tiếp tuyến

Do đó: PA=PM và CP là phân giác của góc ACM

Vì CP là phân giác của góc ACM

nên \(\widehat{ACM}=2\cdot\widehat{PCM}\)

Xét (C) có

QM,QD là các tiếp tuyến

Do đó: CQ là phân giác của góc MCD

=>\(\widehat{MCD}=2\cdot\widehat{MCQ}\)

Ta có: \(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}\)

=>\(\widehat{DCA}=2\cdot\left(\widehat{MCQ}+\widehat{MCP}\right)\)

=>\(\widehat{DCA}=2\cdot\widehat{PCQ}\)

=>\(\widehat{PCQ}=\dfrac{sđ\stackrel\frown{AD}}{2}\left(1\right)\)

Xét ΔBEF có

BC là đường cao

BC là đường phân giác

Do đó: ΔBEF cân tại B

=>BE=BF

Xét ΔBEF có \(\dfrac{BA}{BE}=\dfrac{BD}{BF}\)

nên AD//EF

=>\(\widehat{BAD}=\widehat{BEF}\)

mà \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)(góc tạo bởi tiếp tuyến BA và dây cung AD)

nên \(\widehat{BEF}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{BEF}=\widehat{PCQ}\)

 


Các câu hỏi tương tự
Ngưu Kim
Xem chi tiết
Người Bí Ẩn
Xem chi tiết
Tiểu Chỉ
Xem chi tiết
Lê Yến Nhi
Xem chi tiết
Nguyễn Duy Khánh
Xem chi tiết
Posiwantdo Ilbe
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
ABCXYZ
Xem chi tiết