a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
nên MN=AH
hay MN=4(cm)
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
nên MN=AH
hay MN=4(cm)
Cho tam giác abc vuông ở a, đường cao ah. Gọi d,e lần lượt là hình chiếu của h trên ab,ac . Gọi m, n lần lượt là trung điểm của bh, ch. Chứng minh dmne là hình thang vuông
Bài 4: Cho tam giác ABC vuông tại A (AB< AC) có đường cao AH, M là trung
điểm của cạnh AB, D là điểm đối xứng với H qua M.
a) Chứng minh: tứ giác AHBD là hình chữ nhật.
b) Cho AB = 10cm, AH =8cm. Tính diện tích tứ giác AHBD.
c) Trên tia HC lấy điểm E sao cho HE = HB. Chứng minh: tứ giác ADHE là hình bình hành.
d) Gọi N là giao điểm của AH và DE, K là trung điểm của cạnh AC.
Chứng minh ba điểm M, N, K thắng hàng.
1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.
4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;
b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.
Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, vẽ đường thẳng vuông góc với BC cắt các đường thẳng AB, AC lần lượt tại N và M. gọi H và K lần lượt là trung điểm của BC và MN. Chứng minh rằng tứ giác AKDG là hình chữ nhật
Bài 3: Cho tam giác ABC vuông tại A (AB < AC), trung tuyến AM. E và F lần lượt là chân các đường vuông góc kẻ từ M đến AB và AC a) Chứng minh tứ giác AEMF là hình chữ nhật. b) Cho AB = 4cm, AC = 6cm. Tính diện tích hình chữ nhật AEMF. c) Gọi K là điểm đối xứng với M qua F. Tứ giác AMCK là hình gì? Vì sao?
Cho tam giác ABC vuông tại A (AB<AC). Lấy M,E lần lượt là trung điểm cạnh BC, kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a) Chứng minh ADME là hình chữ nhật
b) Chứng minh DBME là hình bình hành
c) Kẻ đường cao AH của tam giác ABC. Chứng minh DEMH là hình thang cân
Cho tam giác ABC vuông tại A. Gọi E là trung điểm của BC. Kẻ EM, EN lần lượt vuông góc với AB, AC ( M thuộc AB, N thuộc AC ) a) Chứng minh tứ giác AMEN là hình chữ nhật b) Biết BC=10cm, AC=6m. Tính diện tích hình chữ nhật AMEN
Bài 5. Cho tam giác ABC có đường cao AH. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Vì sao?
b) Kẻ MI vuông góc BC tại I, NK vuông góc BC tại K. Chứng minh tứ giác MIKN là hình chữ nhật
c) So sánh IK và BC
cho tam giác abc vuông tại a , trung tuyến am , đường cao ah , trên tia am lấy điểm d sao cho am=md
a)chứng minh abdc là hình chữ nhật ?
b)gọi E và F lần lượt là chân đường vuông góc kẻ từ h xuống a và ac . chứng minh AEHF
c) C/M EF vuông góc vs Am ?