Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Ngọc Phan Trần

Cho tam giác ABC vuông tại A có BM là tia phân giác của ABC. Từ C kẻ đường thẳng vuông góc đường thẳng BM tại D. Chứng minh: DA^2=DM.DB

Akai Haruma
1 tháng 3 2020 lúc 23:16

Lời giải:

Xét tam giác $BMA$ và $CMD$ có:

$\wideha{BMA}=\widehat{CMD}$ (đối đỉnh)

$\widehat{BAM}=\widehat{CDM}=90^0$

$\Rightarrow \triangle BMA\sim \triangle CMD$ (g.g)

$\frac{BM}{CM}=\frac{MA}{MD}$

Xét tam giác $BMC$ và $AMD$ có:

$\widehat{BMC}=\widehat{AMD}$ (đối đỉnh)

$\frac{BM}{MC}=\frac{AM}{MD}$ (cmt)

$\Rightarrow \triangle BMC\sim \triangle AMD$ (c.g.c)

$\Rightarrow \widehat{MBC}=\widehat{MAD}$

Mà $\widehat{MBC}=\widehat{ABD}$ (do $BD$ là tia phân giác góc $B$)

$\Rightarrow \widehat{MAD}=\widehat{ABD}$

Xét tam giác $BAD$ và $AMD$ có:

$\widehat{D}$ chung

$\widehat{ABD}=\widehat{MAD}$ (cmt)

$\Rightarrow \triangle BAD\sim \triangle AMD$ (g.g)

$\Rightarrow \frac{AD}{MD}=\frac{BD}{AD}$

$\Rightarrow AD^2=MD.BD$ (đpcm)

Khách vãng lai đã xóa
Akai Haruma
1 tháng 3 2020 lúc 23:21

Hình vẽ:

Tam giác đồng dạng

Khách vãng lai đã xóa

Các câu hỏi tương tự
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Frienke De Jong
Xem chi tiết
Lân Vũ Đỗ
Xem chi tiết
Ngân Lê
Xem chi tiết
Phương Vân 8/5-41
Xem chi tiết