cho tam giác ABC vuông tại A, có BC=5cm, AC=3cm. trên tia đối của tia CB đặt đoạn thẳng CP=6cm= qua P kẻ đường thẳng vuông góc với BP, cắt tia AC tại Q
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác abc có AB = 3cm, BC = 7cm, BD là đường phân giác (D thuộc AC). Kẻ AH, CK vuông với BD.
a) Chứng minh tam giác AHD ~ tam giác CKD.
b) Chứng minh Ad.BK = BC.BH.
c) Qua trung điểm I của AC kẻ đường thẳng song song BD cắt BC tại M, cắt tia AB tại N. Chứng minh AN = CM.
d) Chứng minh Sabc = 5Sbdi
Cho tam giác ABC vuông tại A, AB < AC. AB= 3cm, AC= 4cm. Đường phân giác BD.
a, Tính BC, AD, CD
b, Qua D kẻ đường thẳng song song với AB cắt BC tại K. Chứng minh: BK.BC = AB.CK
c, Qua D kẻ đường thẳng vuông góc với BD cắt BD, AB và đường thẳng AC lần lượt tại E,G,H. Chứng minh \(\dfrac{CH}{BH}=\dfrac{KD}{AG}\)
Cho tam giác ABC có ba góc nhọn . Đường cao AF , BE cắt nhau tại H . Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC . Tia Ax và By cắt nhau tại K .
a) Chứng minh : tam giác HAE đồng dạng với tam giác HBF.
b) Chứng minh : CE.CA=CF.CB.
c) Chứng minh góc CFE bằng góc CAB.
d) Nếu tam gics ABC cân tại C, chứng minh rằng ba điểm C, H, K thẳng hàng,
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho ∆ABC vuông tại A có phân giác của góc ABC cắt AC tại D. Từ D vẽ đường thẳng song song BC cắt AB tại M. a) Giả sử AB = 6cm, AD = 3cm, CD = 5cm. Tính BC. Tính tỉ số diện tích của ∆AMD với ∆ABC b) Vẽ DE BC tại E. Chứng minh: ∆AMD ∽ ∆EDC. Từ đó suy ra: c) Từ C vẽ đường thẳng vuông góc với BD cắt BD tại I. Chứng minh: BC^2 = BD.BI + CD.CA
Cho tâm giác ABC vuông tại A, biết AB=3cm, BC=5cm, tia phân giác của góc ABC cắt AC tại D.
a. Tính độ dài hai đoạn thẳng AC và AD.
b. Vẽ tia Cx vuông góc tia BD tại E và tia CE cắt đường thẳng AB tại F. CMR: tam giác ABD đồng dạng tam giác EBC, rồi tính tỉ số diện tích của tam giác ABD và tam giác EBC.
c. Tia FD cắt BC tại H, kẻ đường thẳng qua H vuông góc với AB tại M. CMR: MH.AB=FH.MB