Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm
-> BC = CH + BH = 9 + 16 = 25 cm
* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm
Áp dụng đlí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)
=> AC = 15 cm
Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:
AC2 = AH2 + HC2 = 122 + 92 = 225
\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)
Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:
AC2 = BC.HC
\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)
Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:
BC2 = AB2 + AC2
\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400
\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)
Vậy ...
Chúc bn học tốt!
\(AC=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(BC=\dfrac{AC^2}{CH}=\dfrac{15^2}{9}=\dfrac{225}{9}=25\left(cm\right)\)
\(AB=\sqrt{25^2-15^2}=20\left(cm\right)\)