Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vy 7A1 Vũ Nguyễn Khánh
Cho tam giác ABC vuông tại A có (AB<AC), đường cao AH. Biết AH = 12cm, BC = 25cma. Tính BH, CH, AB và AC. b. Vẽ trung truyến AM. Tính góc AMH  .   c. Tính diện tích tam giác AHM  cần hình vẽ và lời giải chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 19:55

a: Đặt HB=x; HC=y(Điều kiện: x>0 và y>0)

Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

mà HB+HC=BC=25

nên \(HB< \dfrac{25}{2}=12,5;HC>12,5\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB\cdot HC=12^2=144\)

mà HB+HC=25

nên HB,HC lần lượt là các nghiệm của phương trình sau:

\(x^2-25x+144=0\)

=>\(x^2-9x-16x+144=0\)

=>x(x-9)-16(x-9)=0

=>(x-9)(x-16)=0

=>\(\left[{}\begin{matrix}x=9\\x=16\end{matrix}\right.\)

mà BH<HC

nên BH=9cm; CH=16cm

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)

b: ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=12,5\left(cm\right)\)

Xét ΔAHM vuông tại H có

\(sinAMH=\dfrac{AH}{AM}=\dfrac{12}{12,5}=\dfrac{24}{25}\)

=>\(\widehat{AMH}\simeq73^044'\)

c: ΔAHM vuông tại H

=>\(AH^2+HM^2=AM^2\)

=>\(HM^2=12,5^2-12^2=12,25\)

=>HM=3,5(cm)

\(S_{HAM}=\dfrac{1}{2}\cdot HA\cdot HM=\dfrac{1}{2}\cdot3,5\cdot12=6\cdot3,5=21\left(cm^2\right)\)


Các câu hỏi tương tự
Nguyễn Đăng Khoa
Xem chi tiết
Nguyễn Hà Thảo
Xem chi tiết
Annie Nguyễn
Xem chi tiết
Trang Thuy
Xem chi tiết
phonie
Xem chi tiết
Lee haoi Nhienn
Xem chi tiết
Lê Hiếu
Xem chi tiết
Nguyễn Thị Hương Giang
Xem chi tiết
Mỳ Lê
Xem chi tiết